An Efficient and Comprehensive Strategy for Genetic Diagnostics of Polycystic Kidney Disease
نویسندگان
چکیده
Renal cysts are clinically and genetically heterogeneous conditions. Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent life-threatening genetic disease and mainly caused by mutations in PKD1. The presence of six PKD1 pseudogenes and tremendous allelic heterogeneity make molecular genetic testing challenging requiring laborious locus-specific amplification. Increasing evidence suggests a major role for PKD1 in early and severe cases of ADPKD and some patients with a recessive form. Furthermore it is becoming obvious that clinical manifestations can be mimicked by mutations in a number of other genes with the necessity for broader genetic testing. We established and validated a sequence capture based NGS testing approach for all genes known for cystic and polycystic kidney disease including PKD1. Thereby, we demonstrate that the applied standard mapping algorithm specifically aligns reads to the PKD1 locus and overcomes the complication of unspecific capture of pseudogenes. Employing careful and experienced assessment of NGS data, the method is shown to be very specific and equally sensitive as established methods. An additional advantage over conventional Sanger sequencing is the detection of copy number variations (CNVs). Sophisticated bioinformatic read simulation increased the high analytical depth of the validation study and further demonstrated the strength of the approach. We further raise some awareness of limitations and pitfalls of common NGS workflows when applied in complex regions like PKD1 demonstrating that quality of NGS needs more than high coverage of the target region. By this, we propose a time- and cost-efficient diagnostic strategy for comprehensive molecular genetic testing of polycystic kidney disease which is highly automatable and will be of particular value when therapeutic options for PKD emerge and genetic testing is needed for larger numbers of patients.
منابع مشابه
Fasting in a 16-year-old girl at-risk of autosomal dominant polycystic kidney disease
Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. PKD currently has no causative therapy. However, some treatment options are available, ranging from symptomatic therapy to delaying the onset of end-stage renal failure. Early diagnosis of adult polycystic kidney disease is vital in order to prevent its complic...
متن کاملGenetic Diagnosis of a Lethal Form of Autosomal Recessive Polycystic Kidney Disease
Background Autosomal recessive polycystic kidney disease (ARPKD; OMIM number 263200) is a severe early onset hereditary form of polycystic kidney and liver disease. Case Report In the current study, we present a consanguineous couple with a history of an affected son with polycystic kidney disease (PKD), hepatic failure and epileptic seizures who died at the age of 8 months. Both parents were h...
متن کاملExon Sequencing of PKD1 Gene in an Iranian Patient with Autosomal-Dominant Polycystic Kidney Disease
Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic kidney disorders with the incidence of 1 in 1,000 births. ADPKD is genetically heterogeneous with two genes identified: PKD1 (16p13.3, 46 exons) and PKD2 (4q21, 15 exons). Eighty five percent of the patients with ADPKD have at least one mutation in the PKD1 gene. Genetic studies have demonstrate...
متن کاملMOLECULAR STUDY OF PKD1 & PKD2 GENES BY LINKAGE ANALYSIS AND DETERMINING THE GENOTYPE/PHENOTYPE CORRELATIONS IN SEVERAL IRANIAN FAMILIES WITH AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE
ABSTRACT Background: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder with genetic heterogeneity. Up to three loci are involved in this disease, PKDI on chromosome 16p13.3, PKD2 on 4q21, and a third locus of unknown location. Methods: Here we report the first molecular genetic study of ADPKD and the existence oflocus heterogeneity for ADPKD in the Iranian populatio...
متن کاملDiagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing
Molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) relies on mutation screening of PKD1 and PKD2, which is complicated by extensive allelic heterogeneity and the presence of six highly homologous sequences of PKD1. To date, specific sequencing of PKD1 requires laborious long-range amplifications. The high cost and long turnaround time of PKD1 and PKD2 mutation analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015